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Ground state structure of random magnets

S. Bastea* and P. M. Duxbury†

Department of Physics& Astronomy and Center for Fundamental Materials Research, Michigan State University,
East Lansing, Michigan 48824-1116
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Using exact optimization methods, we find all of the ground states of (6h) random-field Ising magnets
~RFIM! and of dilute antiferromagnets in a field~DAFF!. The degenerate ground states are usually composed
of isolated clusters~two-level systems! embedded in a frozen background. We calculate the paramagnetic
response~sublattice response! and the ground state entropy for the RFIM~DAFF! due to these clusters. In both
two and three dimensions there is a broad regime in which these quantities are strictly positive, even at
irrational values ofh/J (J is the exchange constant!. @S1063-651X~98!05610-4#

PACS number~s!: 05.50.1q, 64.60.Cn, 75.10.Hk
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Disordered magnets@1# provide a paradigm for disordere
systems in general, and they continue to be intensively a
lyzed by a variety of methods. However, due to metasta
ity, conventional~e.g., Monte Carlo! analysis@2# of the equi-
librium domain structure of random magnets is oft
unreliable, especially at low temperatures. Since the gro
state behavior is an important indicator of the low tempe
ture behavior of most random magnets@3#, exact methods for
ground state analysis are desirable. Fortunately, thetrue
ground states of random magnets can often be found u
optimization methods.

The relation between optimization and random magn
was pointed out some time ago@4,5#. However, extensive
use of these methods is more recent, partially due to
availability of more efficient algorithms. An exact optimiza
tion procedure to find the random-field ground state w
implemented by Ogielski@5#. More extensive analyses o
larger system sizes have been published recently@6,7#. These
methods have also been extended to the analysis of
ground state degeneracy of random magnets@8,9#. Here we
present, using a new algorithm, a more precise analysi
the ground state degeneracy and its consequences in
random-field Ising model~RFIM! and the dilute antiferro-
magnet in a field~DAFF! in dimensionsd52 and 3~square
and cubic lattices!. We concentrate on the following thre
aspects of these degenerate random magnets:~1! The degen-
erate domain structure of RFIM ground states~e.g., Fig.1!.
~2! The order parameter which couples to the ground s
degeneracy.~3! The ground state entropy, and in particul
the physical origin of its continuous and discontinuous pa

We consider the RFIM with a binary random field,

HRFIM52J(
~ i j !

s is j2(
i

his i , ~1!

wherehi56h, with h andJ positive, and the plus and mi
nus random fields occur with equal probability. We also a
lyze the DAFF,
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HDAFF5(
~ i j !

Jxixjs is j2h(
i

xis i , ~2!

wherepi5pd(xi21)1(12p)d(xi) is the probability that a
site is present. In both cases, we analyze the ground s
properties as a function of the ratioH5h/J on square and
cubic lattices. In the DAFF case there is the additional
rameterp, which we fix atp50.9.

The ground state critical behavior of random field ma
nets is still not completely understood@3,6,10#. At small H,
large ferromagnetic domains are favored, while at largeH
.H* , the spins freeze along the directions of the local fie

FIG. 1. Typical supergraph as obtained using the algorithm.S is
the set of spins frozen up, andT the set of spins frozen down.C1 ,
C2 , andC3 are independent clusters; they are made of subclus
that are not independent of each other. TheS-cut is the ground state
with all the independent clusters down, and theT-cut is the one
with all of them up. We also show a directed cut~ground state! in
which part of each independent cluster is up or down.
4261 © 1998 The American Physical Society
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FIG. 2. ~Color! Typical ground states of the
d52 random field ising model@Eq. ~1!# with H
5h/J53/2 ~top!, H52 ~middle!, andH5

5
2 ~bot-

tom! ~system size 50350). Green indicates an up
spin, white a down spin, and the other colors in-
dicate spin clusters that can be flipped up or
down ~but not all independently of each other!
without changing the ground state energy. Black
dots indicate the sites where the random field fa-
vors the up-spin orientation.
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hi . In two dimensions there is no spontaneous magnetiza
for any finiteH(Hc

2D50), though there is a rapidly growin
ferromagnetic domain sizel;exp(1/H2), which can mas-
querade as a phase transition atH;1. In three dimensions
there is a spontaneously magnetized state at smallH,Hc .
Although the field theory analysis and early simulations s
gested a continuous behavior in magnetizationm(H) as H
→Hc

2 , precise numerical work using exact optimizatio
methods suggests a large jump inm at Hc ~for the (6h)
random field caseHc

3D52.2160.01 andDm;0.8) @6#. The
DAFF was introduced as a possible experimental realiza
of the RFIM @11#, and an extensive literature has develop
from this observation@12#. The DAFF is an antiferromagne
at smallH, and at largeH.H* all spins are polarized in the
field direction. The DAFFsublattice (staggered) magnetiza
tion is believed to be qualitatively similar to that of themag-
netizationof the RFIM. Our calculations are for the groun
state degeneracy in the nontrivial regime 0,H,H* , where
H* 52D (d is dimension! is the field amplitude beyond
which all spins follow the local field direction and th
ground state is nondegenerate~for both RFIM and DAFF!.

The ground state degeneracy of the RFIM has been in
sively studied in one dimension@13#. There has also been a
analysis on Cayley trees@14#, and an interesting analysis o
the square lattice@15#. The latter paper did not have th
advantage of exact optimization methods, and missed s
of the key features of the ground state degeneracy. Altho
the infinite range model misses entirely the degeneracy
find here@14#, the one-dimensional and Cayley tree mod
have several qualitative similarities with our results. Mo
recently, Hartmann@9# presented a low precision calculatio
of the ground state degeneracy of random magnets, tho
the physics we elucidate here was not discussed by him

In order to find the ground state of RFIM and DAFF, w
use the mapping of these problems to a flow problem
combinatorial optimization~so called min-cut max-flow!
@16#. This algorithm also gives the exact minimal ener
surface in random networks@17,18#. This has been known
for some time@5#; however, improved algorithms~push-
relabel with global updates@19#! now allow optimization of
1003 lattices in a few minutes on a high end workstation. O
method relies on the concept ofresidual graphintroduced by
the network flow algorithms@19#. The full residual graph of
the equivalent network flow problem holds the whole info
mation about the ground state structure. A naive searc
the ground states — which is equivalent to finding the d
mains that can be flipped without altering the energy~or the
max-flow in the network flow terminology! — is exponen-
tial. Instead we generate a supergraph which shows how
domains are related to each other, i.e., which domains ca
flipped independently. It turns out that many of the doma
are independent, and the exponential search is reduced t
few remaining dependent domains, and we search over t
remaining domains. We show that the problem is equiva
to finding all the directed cuts in a directed graph with sin
arcs and no cycles. A typical supergraph is shown in Fig
It is easy to see how the structure of the supergraph ma
such a search effective, as it reduces it to searches over m
smaller independent graphs. Details of the method will
presented elsewhere@20#.

A typical ground state domain structure of the tw
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dimensional6h RFIM is presented in Fig. 2. Here gree
domains are fixed in the direction of the positive fiel
~dots!, while white domains are fixed in the opposite dire
tion. Domains of any other color can be flipped witho
changing the ground state energy~note that not all can be
flipped independently, but the dependent domains are o
nized in clusters that can also be flipped as a whole!. These
domains produce a finite ground state entropy. Surprisin
domains that can be flipped in the ground state existeven for
irrational H 5h/J. Note that these domains occur at thein-
terfacesbetween the up-spin and down-spin domains of
RFIM ground state. The degenerate clusters at irrationaH
havezero field energy and the same exchange energyin both
the up and down states of the cluster. For the RFIM on
square lattice, the lowest order degenerate clusters of
sort are indicated in the inset to Fig. 3. The number of th
clusters@or two-level-systems~TLS’s!#, nTLS , can be esti-
mated using simple arguments:

nTLS}p TLS

L2

l
, ~3!

whereL is the linear size of the system,l}exp@(1/H)2# is
the typical size of the ordered domains@3#, andL2/ l is the
total length of interface between up- and down-spin doma
in the system.pTLS is the probability of occurrence of a TLS
at a given interface site.pTLS5pn/4, where1

4 is the probabil-
ity of occurrence of the up-down pair of fields, andpn is the
probability to have this pair surrounded in the ground st
by frozen spins with the appropriate configurations. The
tropy density is thens}pn exp@2(1/H2)# for H,4 and 0
for H.4. pn is discontinuous atH52, because the dominan
TLS’s for H,2 are different than those forH.2 ~for ex-
ample, there are twice as many spin configurations that l

FIG. 3. The ground state entropy of the two-dimensional r
dom field Ising model~RFIM! as a function ofh/J5H. The inset
shows the smallest two-level-systems~TLS’s! at irrationalH and an
estimate of the entropy@from Eq. ~3!# produced by them. ‘‘1’’
indicates an up spin, ‘‘2’’ indicates a down spin, and a dot indi
cates where the local random field favors the ‘‘1’’ spin direction.
The system sizes used were from 10310 to 1303130 and the en-
tropy was found as the slope of the line^ lnD& vs N, whereD is the
degeneracy,N is the system size~total number of spins!, and the
average is over the disorder~1000 samples were used!.
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to a TLS below than aboveH52). If we take the observed
jump ;3.3, then the above argument leads to the curve gi
in the inset to Fig. 3, which is very close in form to th
continuous part of the entropy presented in Fig. 3.

The series of sharp peaks occurring at rational value
H are due to additional degeneracy occurring when clus
have the same value forthe field energy plus the exchang
energyin either the up or down states. These peaks can o
occur at rational values of H and the cluster geometrie
which contribute at each rational are different. Naturally hi
order rationals correspond to complex clusters and h
greatly reduced degeneracy. It has been suggested b
@15# that for the two-dimensional~2D! RFIM, the highest
degeneracies occur at rationalsHn5212/n for 2,H,4,
with n51,2 . . . . Using our algorithm we checked this ide
by consideringn51, . . .,11, and all rationals with denomi
nators 2, 3, 4, 5, and 6. We find that those withHn52
12/n are indeed dominant@21# ~see Fig. 3!, and there is a
similar sequence at fields 412/n in three dimensional~the
zoology of the clusters leading to the dominant peaks
straightforward, though tedious to enumerate!. In the regime
0,H,2 the 2D RFIM ground state entropy has spikes a
large number of rationals~see Fig. 2!. These features ar
quite similar to those found in one dimension~see Fig. 4 of
Ref. @13#! and on Cayley trees~see Fig. 4 of Ref.@14#!. We
have also done a preliminary analysis of the 3D RFIM a
the 2D and 3D DAFF ground states. In general we find t
the RFIM and DAFF magnets in two dimensional and th
dimensional are massively degenerate in the regimeHc,H
,H* and that their ground state entropy is finite even
irrational H.

In the regimeHc,H<H* , we can consider the groun
state to be composed of a frozen background in which
embedded a set of largely noninteracting freesuperspins
~corresponding to each independent cluster!. The ground
state of these magnets thus can be considered to cont
large number of magnetic two-level systems@22#. There is a
paramagnetic responseat low temperatures for both th
RFIM and DAFF in this regime. The natural ground sta
order parameter for the paramagnetic response in the re
Hc,H,H* is the magnetizationmpferro

for the RFIM and

FIG. 4. The order parameter for the ground state paramagne
(mpferro

) of the RFIM on square and cubic~inset! lattices. The sys-
tem size was 2003200 for the square and 40340340 to 60360
360 for the cubic lattice~1000 samples were used!.
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the staggered magnetizationmpstaggered
for the DAFF. It is

straightforward to calculate these order parameters using
exact optimization algorithm, either by applying an approp
ate infinitesimal field or by polarizing all of the degenera
domains in a given orientation~we do the latter!. The results
for the RFIM are presented in Fig. 4 for both square a
cubic ~inset! lattices. It is seen that the basic features of t
ground state degeneracy~Fig. 3! are reflected in the ground
state paramagnetic magnetization. In three dimensions,
entropy remains zero at lowH ~at least for H irrational!,
reflecting the ferromagnetic state forH,Hc;2.21 @6#. For
H.H* 56 ~in three dimensions!, the spins are aligned with
the random field, and the ground state is nondegenerate.
that in addition to the paramagnetic magnetization, there
spontaneous magnetizationmsferro

for H,Hc . In experi-
ments in which the ferromagnetic field is swept to produc
magnetization loop, the measured zero field magnetizatio
the sum, i.e.,m0ferro

5msferro
1mpferro

. Thus there is a finite
equilibrium magnetization jump at zero temperature even
H.Hc . Of coursempferro

50 for T.0, but the effects of the
ground state degeneracy should be reflected in magnetiza
anomalies and a Curie law in the susceptibility at low te
peratures.

Calculations of the paramagnetic order parameter for
DAFF, mpstaggered

, for square and cubic lattices is presented
Fig. 5. Qualitatively the situation is similar to that in th
RFIM. There is a strong sublattice paramagnetic response
all Hc,H,H* , with spikes at certain rational value
These figures are for a DAFF with dilutionp50.9, but only
the details change asp is varied. In the regimeH,Hc there
is a spontaneous staggered magnetization, and low temp
ture measurements~such as neutron scattering and NMR!
should be influenced by both the ‘‘staggered paramagne
response and the spontaneous staggered magnetization
also note that the existence of the additional order param
mpferro

in the case of the6h RFIM suggests that the6h

RFIM and the Gaussian RFIM may not be in the same u
versality class.

We have described two developments in the analysis
random magnets.~i! Using optimization methods, it is pos
sible to efficiently calculate the ground state structure

m FIG. 5. The order parameter for the ground state paramagne
(mpstaggered

) of the DAFF on square and cubic~inset! lattices. The
same system sizes and number of samples as for the RFIM
used.
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RFIM and DAFF magnets~see Fig. 2!. ~ii ! The (6h) RFIM
and the DAFF magnets have a spontaneously ordered
for H,Hc , a massively degenerate ground state in the
gime Hc<H<H* , and a nondegenerate ground state
H.H* . In the degenerate regime there is a strictly posit
paramagnetic response and ground state entropy even
,

ys

s.
ate
-
r
e
ir-

rational H, with additional degeneracies at rationalH ~see
Figs. 2–4!.
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