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Ground state structure of random magnets
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Using exact optimization methods, we find all of the ground statestdf)(random-field Ising magnets
(RFIM) and of dilute antiferromagnets in a figl®AFF). The degenerate ground states are usually composed
of isolated clustergtwo-level systemsembedded in a frozen background. We calculate the paramagnetic
responsésublattice respong@nd the ground state entropy for the RF(BIAFF) due to these clusters. In both
two and three dimensions there is a broad regime in which these quantities are strictly positive, even at
irrational values oh/J (J is the exchange constanfS1063-651X98)05610-4

PACS numbg(s): 05.50+q, 64.60.Cn, 75.10.Hk

Disordered magnefd ] provide a paradigm for disordered
systems in general, and they continue to be intensively ana- Hoare= > JXiXjoi07 =2 X0, 2
lyzed by a variety of methods. However, due to metastabil- () '
ibrim domain syucture. of random magnets . often"NereR,=pa(s—1):- (1) () is the probabilty tht a
unreliable, especially at low temperatures. Since the grounaIte IS present. In bqth cases, we analyze the ground state
state behavior is an important indicator of the low temperapropert'e_s as a function of the ratid= h/.‘J on square and
ture behavior of most random magnkg$ exact methods for cubic Iatt|ces.. In the pAFF case there is the additional pa-
ground state analysis are desirable. Fortunately, tthe rameterp, which we f|x.a.\tp:0.9. . ,
ground states of random magnets can often be found usin Th_e gr_ound state critical behavior of random field mag-
optimization methods. ets is still not completely.understocﬁa,&lq. At_ smallH,

The relation between optimization and random magnetﬁ""rge ferromggnetlc domains are f_avor_ed, while at Idfg?
was pointed out some time agé,5]. However, extensive >H, , the spins freeze along the directions of the local field
use of these methods is more recent, partially due to the
availability of more efficient algorithms. An exact optimiza-
tion procedure to find the random-field ground state was
implemented by Ogielski5]. More extensive analyses on
larger system sizes have been published rec¢dfff. These
methods have also been extended to the analysis of the
ground state degeneracy of random maghefd]. Here we
present, using a new algorithm, a more precise analysis of
the ground state degeneracy and its consequences in the
random-field Ising mode(RFIM) and the dilute antiferro-
magnet in a fieldDAFF) in dimensiongd=2 and 3(square
and cubic latticels We concentrate on the following three
aspects of these degenerate random mag(t3he degen-
erate domain structure of RFIM ground statesy., Fig.).

(2) The order parameter which couples to the ground state
degeneracy(3) The ground state entropy, and in particular
the physical origin of its continuous and discontinuous parts.

We consider the RFIM with a binary random field,

HRFIM:_J% UiO'j_Z hioi, (1)

S

whereh;=*h, with h andJ positive, and the plus and mi- £ 1 Typical supergraph as obtained using the algoriis.
nus random fields occur with equal probability. We also ana,e set of spins frozen up, afdthe set of spins frozen dowe; ,

lyze the DAFF, C,, andC; are independent clusters; they are made of subclusters
that are not independent of each other. Bheut is the ground state
with all the independent clusters down, and fheut is the one
*Electronic address: bastea@pa.msu.edu with all of them up. We also show a directed ¢gtound statgin
TElectronic address: duxbury@pa.msu.edu which part of each independent cluster is up or down.
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FIG. 2. (Color) Typical ground states of the
d=2 random field ising mod€glEq. (1)] with H
=h/J=3/2(top), H=2 (middle), andH = 3 (bot-
tom) (system size 58 50). Green indicates an up
spin, white a down spin, and the other colors in-
dicate spin clusters that can be flipped up or
down (but not all independently of each other
without changing the ground state energy. Black
dots indicate the sites where the random field fa-
vors the up-spin orientation.
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h;. In two dimensions there is no spontaneous magnetization

for any finiteH(H2°=0), though there is a rapidly growing

ferromagnetic domain size~exp(1H?), which can mas- i ; L

querade as a phase transitionHat- 1. In three dimensions, 0.06 o (T T [T Tt

there is a spontaneously magnetized state at skhalH, . 8 i 1

Although the field theory analysis and early simulations sug-

gested a continuous behavior in magnetizatiofH) asH n . /L———j

—H. , precise numerical work using exact optimization

methods suggests a large jumprmat H, (for the (=h) 0.03

random field caséi>P=2.21+0.01 andAm~0.8) [6]. The

DAFF was introduced as a possible experimental realization

of the RFIM[11], and an extensive literature has developed

from this observatiof12]. The DAFF is an antiferromagnet

at smallH, and at largeHd>H_ all spins are polarized in the % b 5 3 7 5

field direction. The DAFFsublattice (staggered) magnetiza- h/J

tion is believed to be qualitatively similar to that of theag-

netizationof the RFIM. Our calculations are for the ground  FIG. 3. The ground state entropy of the two-dimensional ran-

state degeneracy in the nontrivial reginqg H<H* , where dom field Ising mode[RFIM) as a function oh/J=H. The inset

H,=2D (d is dimension is the field amplitude beyond shqws the smallest two-level-systefii$ S’s) at irrationalH and an

which all spins follow the local field direction and the ©stimate of the entropjfrom Eq. (3)] produced by them. "

ground state is nondegenerater both RFIM and DAF. ~ indicates an up spin, =" indicates a down spin, and a dot indi-
The ground state degeneracy of the RFIM has been intersates where t_he local random field favors the ' spin direction.

sively studied in one dimensidii3]. There has also been an | '€ System sizes used were fromxI0 to 130<130 and the en-

analysis on Cayley tredd44], and an interesting analysis on tropy was found as the slope of the lifieD) vsN, whereD is the

the square latticg15]. The latter paper did not have the degeneracyN is the system sizétotal number of spins and the

N . i the disordét000 [ d
advantage of exact optimization methods, and missed some g€ IS overine disor €1000 samples were use

of the ke_y features of the ground state degeneracy. AIthouglc]imensionalth RFIM is presented in Fig. 2. Here green
the infinite range model' MISSES entirely the degeneracy Wdomains are fixed in the direction of the positive fields
find here{14], the one-dimensional and Cayley tree rnOdeIS(dots while white domains are fixed in the opposite direc-
have several qualitative similarities with our results. More,. f . ; .

L .~ “tion. Domains of any other color can be flipped without
recently, Hartmanifi9] presented a low precision calculation hanging the ground state energyote that not all can be

of the ground state degeneracy of random magnets, thouglnpped independently, but the dependent domains are orga-

the physics we elucidate here was not discussed by him. . din cl h Iso be flipped alb
In order to find the ground state of RFIM and DAFF, we nized In ¢ usters t at. can aiso be Tlipped as a wh ese
use the mapping of these problems to a flow problém indomalns produce a finite ground state entropy. Surprisingly,

combinatorial optimization(so called min-cut max-floy g?ggg'r:; t:a_t ﬁ?; tI)\leo?(IeptI?g: It?]ézz ?ji)orzgidn:tiecﬁu:?i;%r
[16]. This algorithm also gives the exact minimal energy ; - .h : X i t th
surface in random networkd7,18. This has been known terfacesbetween the up-spin and down-spin dom_auns_ of the
for some time[5]; however i;nproved algorithmgpush- RFIM ground state. The degenerate clusters at irratibhal

relabel with global updatel9]) now allow optimization of havezero field energy and the same exchange eniergipth

100 lattices in a few minutes on a high end workstation. Ourthe up and'down states of the cluster. For the RFIM on thg
square lattice, the lowest order degenerate clusters of this

method relies on the conceptiafsidual graphintroduced by sort are indicated in the inset to Fig. 3. The number of these

the network flow algorithm§19]. The full residual graph of , .
the equivalent network flow problem holds the whole infor- clusters{or twc.)—level-systemiTll_S S)], nrs, can be esti-
rpated using simple arguments:

mation about the ground state structure. A naive search o
the ground states — which is equivalent to finding the do- L2
mains that can be flipped without altering the enefgythe N1 P TLs—, 3
max-flow in the network flow terminology— is exponen- |
tial. Instead we generate a supergraph which shows how the
domains are related to each other, i.e., which domains can bghereL is the linear size of the systerwexp[(1/H)?] is
flipped independently. It turns out that many of the domainghe typical size of the ordered domaif®, andL?/1 is the
are independent, and the exponential search is reduced to tk@al length of interface between up- and down-spin domains
few remaining dependent domains, and we search over thegethe systempr s is the probability of occurrence of a TLS
remaining domains. We show that the problem is equivalenat a given interface sit@q, s= p,/4, where; is the probabil-
to finding all the directed cuts in a directed graph with singleity of occurrence of the up-down pair of fields, apgis the
arcs and no cycles. A typical supergraph is shown in Fig. 1probability to have this pair surrounded in the ground state
It is easy to see how the structure of the supergraph makdsy frozen spins with the appropriate configurations. The en-
such a search effective, as it reduces it to searches over mutiopy density is thersx<p, exp[—(1/H?)] for H<4 and 0
smaller independent graphs. Details of the method will béfor H>4. p,, is discontinuous atl =2, because the dominant
presented elsewhef0]. TLS’s for H<2 are different than those fdi>2 (for ex-

A typical ground state domain structure of the two- ample, there are twice as many spin configurations that lead
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FIG. 4. The order parameter for the ground state paramagnetism FIG. 5. The order parameter for the ground state paramagnetism
(mpferm) of the RFIM on square and cubimse) lattices. The sys- (mpstaggerez of the DAFF on square and cubimse) lattices. The
tem size was 208200 for the square and #40x 40 to 60x 60 same system sizes and number of samples as for the RFIM were
X 60 for the cubic lattic61000 samples were used used.

the staggered magnetizationpstaggeredfor the DAFF. It is

ﬁtraightforward to calculate these order parameters using the
’ . : 2 . xact optimization algorithm, either by applying an appropri-
in the inset to Fig. 3, which is very close in form to the ;. infir?itesimal fieldgor by polarizing aIFI)F())lythge degzﬁergte
continuous part of the entropy presented in Fig. 3. domains in a given orientatiofwe do the latter The results
The series of sharp peaks occurring at rational values ofy; ihe RFIM are presented in Fig. 4 for both square and
H are due to additional degeneracy occurring when clustergypic (insej lattices. It is seen that the basic features of the
have the same value fahe field energy plus the exchange ground state degenera¢yig. 3 are reflected in the ground
energyin either the up or down states. These peaks can onlgtate paramagnetic magnetization. In three dimensions, the
occur atrational values ofH and the cluster geometries entropy remains zero at low (at least for H irrationg|
which contribute at each rational are different. Naturally highreflecting the ferromagnetic state fek<H.~2.21[6]. For
order rationals correspond to complex clusters and havei>H, =6 (in three dimensionsthe spins are aligned with
greatly reduced degeneracy. It has been suggested befdtee random field, and the ground state is nondegenerate. Note
[15] that for the two-dimensional2D) RFIM, the highest that in addition to the paramagnetic magnetization, there is a
degeneracies occur at rationdt,=2+2/n for 2<H<4,  spontaneous magnetizaticmSferro for H<H.. In experi-

with n=1,2....Using our algorithm we checked this idea ments in which the ferromagnetic field is swept to produce a

by consideringn=1, .. .,11, and all rationals with denomi- magnetization loop, the measured zero field magnetization is
nators 2, 3, 4, 5, and 6. We find that those with=2  the sum, Le.mg_  =mg +my . Thus there is a finite

+_2/_n are indeed dominar[lzl] (s_ee Fig. ;&_and there is a equilibrium magnetization jump at zero temperature even for
similar sequence at fields+42/n in three dimensionalthe H>H. Of coursem. =0 for T>0. but the effects of the
¢ Pferro !

zoology of the clusters leading to the dominant peaks is . L
straightforward, though tedious to enumeyata the regime ground state degeneracy should be reflected in magnetization

0<H<2 the 2D RFIM ground state entropy has spikes at L£nomalies and a Curie law in the susceptibility at low tem-
large number of rationalésee Fig. 2 These features are peratures. _
quite similar to those found in one dimensitsee Fig. 4 of Calculations of the paramagnetic ordgr parameter for t.he
Ref.[13]) and on Cayley treetsee Fig. 4 of Ref{14]). We DAFF, Mp aggereds for square and cubic lattices is presented in
have also done a preliminary analysis of the 3D RFIM and-ig- 5. Qualitatively the situation is similar to that in the
the 2D and 3D DAFF ground states. In general we find thaRFIM. There is a strong sublattice paramagnetic response for
the RFIM and DAFF magnets in two dimensional and threeall Hc<H<H, , with spikes at certain rational values.
dimensional are massively degenerate in the redipeH  These figures are for a DAFF with dilutiqe= 0.9, but only
<H, and that their ground state entropy is finite even atthe details change gsis varied. In the regiméi <H_ there
irrational H. is a spontaneous staggered magnetization, and low tempera-
In the regimeH,<H<H, , we can consider the ground ture measurement&such as neutron scattering and NMR
state to be composed of a frozen background in which ighould be influenced by both the “staggered paramagnetic”
embedded a set of largely noninteracting freeperspins response and the spontaneous staggered magnetization. We
(corresponding to each independent clustdihe ground also note that the existence of the additional order parameter
state of these magnets thus can be considered to contain®,,, in the case of theth RFIM suggests that the-h
large number of magnetic two-level systef2g€]. There isa RFIM and the Gaussian RFIM may not be in the same uni-
paramagnetic responsat low temperatures for both the versality class.
RFIM and DAFF in this regime. The natural ground state We have described two developments in the analysis of
order parameter for the paramagnetic response in the regimmiandom magnetdi) Using optimization methods, it is pos-
H.<H<H,_ is the magnetizatiomnpferro for the RFIM and sible to efficiently calculate the ground state structure of

to a TLS below than abovel =2). If we take the observed
jump ~ 3.3, then the above argument leads to the curve give
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RFIM and DAFF magnetssee Fig. 2. (i) The (xh) RFIM rational H, with additional degeneracies at ratiortdl (see
and the DAFF magnets have a spontaneously ordered stafégs. 2—4.

for H<H_, a massively degenerate ground state in the re-

gime H.<H=<H, , and a nondegenerate ground state for We thank Michael F. Thorpe and David P. Belanger for
H>H, . In the degenerate regime there is a strictly positivediscussions. This work was supported by the U.S. DOE un-
paramagnetic response and ground state entropy even at @ter Contract No. DE-FG02-90ER45418.
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